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PREDICTION OF ULTIMATE STRENGTH OF AXIALY LOADED
REINFORCED CONCRETE SHORT COLUMNS USING
ARTIFICIAL NEURAL NETWORKS

Dr. Nabeel A. Jasim and Mustafa S. Zewair

Dept. of civil enginearing, College of engineering, University of Basrah, Basrah Irag,

Abstract: The present study deals with the analysis of short reinforced concrete columns subjected
to axial load. One of efficient technigues is applied, known as anificial neural networks. The
descent gradient backpropagation algorithm is employed for amalysis. The optimum topology
{which gives least mean square error for both training and testing with fewer number of epochs) is
presented. The effects of the number of nodes in input and hidden layer(s), and selecting of leaming
rate and momentum coefficient, on the behaviour of neural network have been investigated. Due to
slow convergence of results when using descent gradient backpropagation, the faster algorithm
called "resilient backpropagation algorithm” has been used to improve the performance of the
neural network and the results have been compared with those obtained using the descent gradient
backpropagation algorithm.
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Introduction _ backpropagation Type neural network, The
Computer algorithms that mimic the configuration and  training of neural
biological neural network are  called networks is a irial—and—eror process due 10
artificial neural network. In simple terms quch undetermined ~parameters 25 the
artificial neural nerwork tries to imitate number of nodes in the hidden layer, the
architectures and internal feature of brain jearning parameter and the number of

and nervous Systerl. Artificial neural training patterns.
networks are useful carnpitation systems
which can be frained fo leam complex  Bghaviour of Reinforced
relationship between two or many variables

or data set. They are composed of highly Concrete Columns

- interconnection simple processing nodes or Under increasing load, 1t was found that
columns with longitudinal and fransverse

artificial ~ neurons which  process )
information by the dynamic state response reinforcement show a development of

o ex | output(1] as shown in Fig (1), surface cracks{3]. These cracks eventually
o external output(1) | . | ig (1) led 1o the spalling of concrcte COVEL, at

which time large pieces of concrete where
observed to separate from the core. The
gpalling ofien resulted in some drop in load
resistance,  which was subsequently
recovered. Post spalling behaviour varied
depending on the characteristic of confined
core concrete. The failure of high-strength
concrete (HSC) eolumns is characterized by
o, IR the formation of inclined shear sliding
Figure (1) Architecture of neural surfaces, separating .the.cor%cretc core into
Network rwo wedges[3). The inclination of the shear

gliding plane with the vertical axis varies

This technique has been successfully from (257) for low confined specimens o
applied in various felds such as function (457) for highly confined specimens[4]-
approximation, control  system,  and Columns with high strength concrele failed

e
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classification(2], Neural petworks are much in a britle and explosive mannel unless
simpler than the human brain, it comprises they ~ were confined with  ransverse
from fewer components. [t consists of g ranforcement that can provide sufficiently
qumber of nodes, ¢ach node receives high lateral confinement Pressure. There 1s
several inputs from neighboring clement, a  consistent decrease 1D column
but sends only one output. The neural deformability with Lncreasing concrete
network is trained to produce desired output str?ngth[i]. When using low volumetric
or (get of outpuis). The trained network cat ratio of lateral steel, 2 sun_idcn loss of
be used to generalize input that are not strength  was abserved in _columns
included in the training set. smmediately after the peak load. The failure

"This technique is used to investigate the was associated with hoop fracture, followed
altimate resistance of short reinforced by buckitng of longitudinal reinforoement
concrete columns subjected to axial load. and crushing of core concretef3]. When
The results of these investigations are incressing spacing  between (ansvers
presented  and discussed 1o show the bars, the column showed faster rate of
performance of the neural network model in strength d:eca?', However, the behaviour of
dealing with this problem. It is proposed to columns is highly affected by spacing and
find the relationship between input and amount of transyerse reinforcement. It has

utput parameters using 2 feedforward been fqund [6], for HSC columns confined

: m—
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with high—strength lateral steel, that the tie
yield strength was developed at the peak
strength of confined concrete ondy for well—
confined concrete specimens. Stegl stress
lower than the tie yield strenpth, measured
at the maximum strength of confined
concrete, was observed for less confined
concrete columns. Thus, an increase of the
tie vield strength wounld result in an
enhancement of the strenpth and toughness
gains only for wellconfined specimens
with large ratios of lateral reinforcement.
'This indicated that the grade of transverse
steel played a significant role in column
confinement. Strength and  ductility of
unconfined concrete are known to be
imversely proportional. When the
volumetric ratio of transverse reinforcement
iz very low, the column shows bmottle
behaviour and the effect of concrete
sirength becomes insignificant. The passive
confinement pressure is generated from
tensile forces that develop in transverse
reinforcement.  Stress  in  transverse
reinforcement is generated as a result of
lateral expansion, which in turn is
dependent on the mechanical properties of
concrete. Therefore, the effectiveness of
high-strength transverse reinforcement is
dependent on the ability concrete to expand
laterally without failure. Therefore, the
reduction in the volumetric ratio can be
compensated by an increase in the grade of
transverse reinforcement[4].

Selection of Training Patterns
The experimental values used to train the
neural network as training data are those
obtained from available literature [4, 5, and
6]. The total data (patterns) are divided into
two groups; training data, and testing data,
The training data are used fo train the
network to find the relationship between the
input and cutput parameters. Preparing of
training data is a matter of considerable
importance in training the neural network.
The range of parameters used o produce
training data are shown in Table (1)
Although the neural networks interpolate

data very well, the extrapolation of data has
not in the same confidence. Therefore, the
training data should be selected in such a
way that it includes data from all regions of
interest.

Selection of Testing Patterns

After training network, the weights and
biases are fixed and the network can then
be run with same or fresh seis of data. In
testing the network at first it is necessary to
run the network by using the training data
to see whether the network produces good
approximatien to the known output for
these data, and then to prepare further data
which have not been used in training phase
and tun the network with these data to
check the accuracy of this net. This
property of  network is  called
generalization. The generalization depends
on the size of the training data set, the
architecture of the network, and the
complexity of the problem [1]. The number
of 1testing date are taken randomly
approximately as {16%) of total database. A
more information of the pregress of training
is given by convergence history {learning
curve), which is obtained by evaluating the
MBSE for the testing data at intervals during
the course of training [7].

input and Output Layers

The nodes in the input and output layers
are usually determined by the nature of the
problem. In this study the parameters which
may be infreduced as the components of the
input vector consist of the width of column
cross section (5}, the depth of column cross
section (d), the comcrete compressive
strength  (fe(1), the watio of lengitudinal
reinforcement (py), yield stress of
longitudinal  steel {59, the ratio of
transverse  steel  (p), yield siess of
transverse steel (7)), and spacing of stirrups
(5f). The output vector is the ultimate axial
load of columns {Pu). Table (1} summarizes
the ranges of cach variabic.




Table (1) Input and output parameters

Ttem Parameters | Units Range of
parameters
From To |
b M 175 | _ 250
d mim 225 3D
! min 901 1500
Input | fell MPa 52.6 124
parameters It - 00111 | 00419
ri MPa 40 475
fe) - 0.0051 0.049
At MPa | 392 1600
. 5 mm 50 225
Output Pt KN 3573 8415
L paramefers . |

Number of Hidden Layers and

Nodes in Each Hidden Layer
The number of hidden layers and the
number of nodes in each hidden layer are
not straightforward to ascertain[8]. No rules
are available to determine the exact
number. However, the choice of the number
of hidden layer and number of nodes in the
hidden layer depends on the network
application. Although using a single hidden
in  solving  many
functional approximation problems, some
problemns may be casier 1o solve using two
hidden layer configurations[9]. The number
of nodes in the hidden layer is selegted
according to the following rules:
13 The maxiommn error of the output
network parameters should be as smail
as possible for both traimng patterns
and testing pattemns.

layer

2 The

with

13

training

one  and

sufficient

epochs

two

{number of
iterations) should be as few as possible.

In the present work the network is tested

hidden

layer

configurations with an increasing number
of nodes in each hidden layer(s). Fig. (2)
illustrates the network response as the
nurnber of nedes in one—and two-hidden
layer networks inereases. The results show
that the nwo—hidden layer network petforms
sipnificantly better than the one—hidden
layer network. The optimal configuration
for the two-hidden layer network, with
minimum mean square emor (MSE}, is

numa] fi ScicncNo.l
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{7:14) (7 nodes in the first hidden layer and
14 nodes in the second hidden layer). This
configuration will be used in this case
study. The figure also shows the effect of
node number in the hidden layvers on the
required number of epochs for which the
neural netwotrk converges. In this figure, a
node number of 2i(7:14) with {520)
number of epochs {number of iterations}
corresponds to the smallest MSE. The
optimal configuration of the neural network
is depicted in Fip.(3). The hyperbolic
tangent {tansig) transfer function is used in
first hidden layer and linear (purelin)
transfer function in both second hidden and
cutput layers.

Learning Rate and Momentum
Coefficient

The learning rate and momentum
coefficient are two impottant parameters
that control the eifectivencss of the training
algorithm. When using the steepest descent
algorithm with momentum (GDM), the
network performance can be improved by
finding optimal values for leaming rate ()
and the momentum coefficient (mc). The
effect of leaming rate (&) and momentum
coefficient {mc) on the behaviour of neural
network 18 studied by using the
combination of {a} [from 0.05 to 0.5] and
{(mc) [from 0.1 to 0.93. Each combination is
trained with the selected network (two
hidden layers 7-14} and with the same set
of data and initial weighl to 2000 epochs.
The results are illustrated in Fig. {4}. From
this figure the leamning rate of 0.1 in
combination with momentum coefficient of
0.8 pgives the best performance than the
others. These values give the least
MSE=0.00204, and arc chosen for the
proposed network. The convergence history
of this network is shown in Fig.(5). Table
{2} shows the properties of this network.

Tablz (2) 'roperties of the proposed
network

MSE MSE
Network | Epochs training festing

|£: lf _—1) EOQD 0.00204 0.0029
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on the behaviour of reinforced cencrete
columns is studied, The results are shown
in Figs. (9} to (12}.

Figure (9) shows the effect of concrete
compressive strength (fctl) on the ultimate
resistance of reinforced concrete columns.
When increasing the compressive strength,
the ultimate resistance is found to increase.
The increase in the concrete compressive
strength from 60 to 120 MPa caused an
increase in the ultimate axial load capacity
of 3647%. The comparison of the
experimental results with the obtained
relationship shows good agreement.

L L]
Figure (10) shows that the increase of Nantber of Epocis J
the ratio of longitudinal reinforcement leads Figure (2) Performance of network with
to increase in the ultimate resistance of one and two hidden layer(s)

columns. The increase in longitudinal
reinforcement ratio from 0.01 to 0.05 leads
to an increase in the ultimate axial load
capacity of 33.07%. The experimental
results also show the same trend of
relationship.

Figure (11} shows the variation of
ultimate resistance of columns with the
ratie of transverse reinforcement. The
figure indicates that an increase in the ratio
of transverse reinforcement Jeads 1o
increase in the ultimate resistance. For an
increase in transverse reinforcement ratio
from 0.015 to 0.05, the increase in the : A .
ultimate axial load capacity is 16.96%. Figure (3) Configuration of neural
Same trend of behavious is also obtained by network (7-14)
the experimental results as depicted in Fig.
(11,

The effect of the spacing of ties is
depicted in Fig. (12). In this figure, it can
be seen that the increase of spacing of ties
leads to decrease in the ultimate resistance
of columns. For an increase in spacing of
ties from 60 to 225 min, the decrease in the
ultimate axial load capacity is 5.77%.

1
1
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Momenion eoflicienly

Figure (4) Effect of combination of
learning rate and momentum
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Figure (7) Regression analysis based on




Figure (11) Variation of ultimate axial
load capacity with variation of
transverse reinforcement ratio
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Figure (11) Influence of spacing of ties
on ultimate axial load capacity

Conclusions

In the present study, an artificial neural
network model is used for the analvsis of
short remforced concrete  columns
subjected to axial load. A multi-layered
feedforward  backpropagation  newral
network, has been used. The results of the
analvsis are presented to demonstrate the
simplicity and accwragy of this medel in
predicting the behaviour of reinforced
conerete columns.
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Notation:

b width of eclumn cross section (mm?).
d: depih of column cross section (mm).
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fel: eylinder compressive strength of st: spacing of ties {mm).
concrete wi: weighl value.
(MPa). a: learning rate.
- yield strength of longitudinal stecl gy : volumetric ratio of longitudinal
(MPa), reinforcement in column cross section.
fvt: yield strength of transverse steel (MPaj. p: 1 volumetric ratio of transverse

reinforcement, defined as volume of
iransverse steel divided by volume of
core concrete, measured center to center
of hoop perimster.

GDM: steepest descent with momentum,
I height of column (mm).

me: momentum coefficient.

R: correlation coefficient.

RPROP: resilicnt backpropagation
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