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PREDICTION OF ULTIMATE STRENGTH OF AXIALY LOADED 
REINFORCED CONCRETE SHORT COLUMNS USING 

ARTIFICIAL NEURAL NETWORKS 
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Abstract: The present i,"tudy deals with the analysis of short reinforced concrete columns subjected 
to axial load. One of efficient techniques is applied, known as anificial neural networks. The 
descent gtadient backpropagation algorithm is employed for amilysis. The optimum topology 
(which gives least mean square error for both training and testing with fewer number of epochs) is 
presented. The effects of the number of nodes in input and hidden layer(s), and selecting ofleaming 
rate and momentwn coefficient, on the behaviour of neural network have been investigated. Due to 
slow convergence of results when using descent gradient backpropagation, the faster algorithm 
called "resilient backpropagation algorithm" has been used to improve the performance of the 
neural network and the results have been compared with those obtained using the descent gradient 
backpropagation algorithm . 
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Introduction 
Computer algorithms that mtm1c th.e 

biological neural network arc called 

artificial neural network. In simple renns 

artificial neural network tries to imitate 

architectures and internal feature of brain 

and nervous system. Artificial neural 

networks are useful computation systems 

which can be trained to learn complex 

relationship between two or many variables 

or data set. They are composed of highly 

interconnection simple processing nodes or 

artificial neurons which process 

infonnation by the dynamic state response 

to external output[ I) as shown in Fig.( I}. 

Ficun (1) Architecture of neural 

Network 

This technique has been successfully 

applied in various fields such as function 

approximation, control system, and 

classification(2]. Neural networks are much 

simpler than the human brain, it comprises 

from fewer components. It consists of a 

number of nodes, each node receives 

several inputs front neighboring element, 

but sends only one output. The neural 

networlc is trained to produce desired output 

or (set of outputs). The trained network can 

be used to generalize input that are not 

included in the training set. 

This technique is used to investigate the 

ultimate resistance of short reinforced 

concrete columns subjected to axial load. 

The results of these investigations are 

presented and discussed to show the 

performance of the neural network model in 

dealing with this problem. It is proposed to 

find the relationship between input and 

output parameters using a feedfoiward 
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backpropagation type neural network. The 

configuration and training of neural 

networks is a tri.al-and-emx process due to 

such undetermined parameters as the 

number of nodes in the hidden layer, the 

learning parame1er and the number of 

training patterns. 

Behaviour of Reinforced 

Concrete Columns 

Under increasing load, it was found that 

columns with longitudinal and transverse 

reinforcement show a development of 

surface cracks[)]. These cracks eventually 

led to the spalling of concrete cover, at 

which time large pieces of coocrete where 

observed to separate from the core. Tue 

spalling often resulted in some drop in load 

resistance, which was subsequently 

recovered. Post spalling behaviour varied 

depending on the characteristic of confined 

core concrete. The failure of high-strength 

concrete (HSC) colwnns is characterized by 

the fonnation of inclined shear sliding 

surfaces, separating the concrete = into 

two wedges[3). The inclination of the shear 

sliding plane with the vertical axis varies 

from (25.) for low confined specimens to 

(45') for highly confined specimens(4). 

Colwnns with high strength concrete failed 

in a brittle and explosive manner unless 

they were confined with transverse 

reinforcement that can provide sufficiently 

high lateral confinement pressure. There is 

a consistent decrease in colwnn 

deformability with increasing concrete 

strength(SJ. When using low volumetric 

ratio of lateral steel, a sudden loss of 

SttCngth was observed in columns 

immediately after the peak load. The failure 

was associated with hoop fracture, followed 

by buclcling of longitudinal reinforcement 

and CIUShing of core concrcte{S]. When 

increasing spacing between transverse 

bars, the column showed faster rate of 

~.rength decay. However, the behaviour of 

columns is highly affected by spacing and 

amount of transverse reinfon:ement It has 

been found (6], for HSC colwnns confined 

-
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with high-strength lateral steel, 1hat the tie 
yield sttength was deveJoped at the peak 
strength of confined concrete only for well
confined concrete specimens. Steel stress 
lower than the tie yield strength, measured 
at the maximum strength of confined. 
concrete, was observed for Jess confined 
concrete columns. Thus, an increase of the 
tie yield strength would result in an 
enhancement of the strength and toughness 
gains only for well-confined specimens 
with large ratios of lateral reinforcement. 
This indicated that the grade of transverse 
steel played a significant role in column 
confinement. Strength. and ductility of 
unconfined concrete are known to be 
inversely proportional. When the 
volumetric ratio of transverse reinforcement 
is very low, the column shows brittle 
behaviour and the effect of concrete 
strength. becomes insignificant. The passive 
confmement pressure is generated from 
tensile forces that develop in transverse 
reinforcement. Stress in transverse 
reinforcement is generated as a result of 
lateral expansion, which in turn is 
dependent on the mechanical properties of 
concrete. Therefore, the effectiveness of 
high- strength transverse reinf~ment is 
dependent on the ability concrete to expand 
laterally without failure. Therefore, the 
reduction in the volwnetric ratio can be 
compensated by an increase in the grade of 
transversereinforce:ment[4]. 

Selection of Training Patterns 
The experimentoJ values used to train the 

new-al network as training data are tho:ie 
obtained from available literature (4, S, and 
6]. The total data (patterns) are divided into 
two groups; training data, and testing data. 
The training data are used to train the 
network to find the relationship between the 
input and output parameters. Preparing of 
training data is a matter of considerable 
importance in training the neural network. 
T~ _range of parameters used to produce 
murung data are shown in Table (1). 
Although the neural networks interpolate 
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dam very well, the extrapolation of data has 
not in the same confidence. Tiierefore, the 
training data should be selected in such a 
way that it includes data from all regions of 
interest. 

Selection of Testing Patterns 
After training network, the weights and 

biases are fixed and the network can then 
be run with same or fresh sets of data. In 
testing the networlc at first it is necessary to 
run the network by using the training data 
to see whether the netWork produces good 
approximation to the known output for 
these data, and then to prepare further data 
which have not been used in training phase 
and run the network with these data to 
check the accuracy of this net. This 
property of network is called 
generalization. The generalization depends 
on ~e size of the training data set, the 
architecture of the network, and the 
complexity of the problem (I). The number 
of testing data are taken randomly 
approximately as ( 16o/o) of total database. A 
~o~ information of the progress of training 
1s given by convergence history {learning 
curve), which is obtained by evaluating the 

MSE for the testing data at intervals during 
the course of training [7]. 

Input and Output Layers 
The nodes in the input and output layers 

are usually determined by the nature of the 
problem. In tlris study the parameters which 
may be introduced as the components of the 
input vector consist of the width of column 

cross section (h ), the depth of column cross 
section (d), the concrete compressive 
strength (fcr:J ), the ratio of longitudinal 
reinforcement (p,), yield stress of 
longitudinal steel {fj,), the ratio of 
transverse steel (p,), yield stress of 
transverse steel (fyt), and spacing of stirrups 
(st). The output vector is the ultimate axial 
load of columns (Pu). Table ( I) summarizes 
the ranges of each variable. 



 

Table (1) lnnut and outout parameters --· 
Item r-:: 

Input 
arameters 

Output 
ar'!!'!efen 

t= 
~ 
~ 

Parame1ers Units 

.. 
/) mm 
d mm 
l mm 

..... _fr[) MPi, 
p, -
,;, .M.J?a 
P• -
Ji,z MPa 
SI mm .. 

Pu kN 

·7 
Range of 

parameters 

From To 
175 250 
22s- 300 
900 l~Ql!_ 
52.6 124 

0.0111 0.0419 
400 47S 

0.0091 ~-049 
.392 1000 
50 22.S 

3573 8415 

-· 
Number of Hidden Layers and 
Nodes in Each Hidden Layer 

The number of hidden layers and the 
number of nodes in each hidden layer are 
not straightforward to ascertaln[S]. No rules 
arc available to determine the exact 
number. However, the choice of the number 
of hidden layer and number of nodes in the 
hidden foyer depends on the network 
application. Although using a single hidden 
luyer is sufficient in solving many 
functional approximation problems, some 
problems may be easier to solve using two 
hidden layer configurations[9]. The number 
of nodes in the hidden layer is selected 
according to the following rules: 
l) The maximum error of the output 

network parameters should be !IS small 
as possible for both training patterns 
and testing patterns. 

2) The training epochs (number of 
iterations) should be as few as possible. 
In the present work the network is tested 

with one and two hidden layer 
configurations with an increasing number 
of nodes in each hidden layer(s). Fig. (2) 
illustrates the network response as t11e 
number of nodes in one-and two-hidden 
layer networks increases. The results show 
that the two-hidden layer network performs 
significantly better than the one-hidden 
layer network. The optimal configuration 
for the two-bidden layer network, with 
minimum mean square error (MSE), is 
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(7: 14) (7 nodes in the first hidden layer and 
14 nodes in the second hidden layer). This 
configuration will be used in this case 
study. The figure also shows the effect of 
node number in the hidden layers on the 
required number of epochs for which the 
neural network converges. In this figure, a 
node number of 21(7:14) with (S20) 
number of epochs (number of iterations) 
corresponds to the smallest MSE. The 
optimal configuration of the neural network 
is depicted in Fig.(3). The hyperbolic 
tangent (tansig) transfer function is used in 
first hidden layer and linear (purelin) 
transfer function in both second hidden and 
output layers. 

Learning Rate and Momentum 
Coefficient 

The learning rate and momentum 
coefficient are two important parameters 
that control the effectiveness of the training 
algorithm. When using the steepest descent 
algorithm with momentum (GDM), the 
network performance can be improved by 
finding optimal values for learning rate (a) 
and the momentum coefficient (me). The 
effect of learning rate (a) and momentum 
coefficient (me) on the behavfour of neural 
network is studied by using the 
combination of (a) [from 0.05 to 0.5] and 
(me) [from O. l to 0.9]. Each combination is 
trained with the selected network (two 
hidden layers 7-14) and with the same set 
of data and initial weighl to 2000 epochs. 
The results arc: illustrated in Fig. ( 4). from 
this figure the learning rate of O. l in 
combination with momenrum coefficient of 
0.8 gives the best performance than the 
others. These values give the least 
MSE=0.00204, and are chosen for the 
proposed network. The convergence history 
of this network is shown in Fig.(S). Table 
(2) shows the properties of this network. 

Table (2) Properties of the proposed 
network 

MSE MSE l 
JVetlNOfk Epochs training testing 

~=-•~.:-!) 2000 0.00204 0.0029 I ... ···-~· . . . 



 

on the behaviour of reinforced concrete 

columns is studied . The results are shown 

in Figs. (9) to (12). 
Figure (9) shows the effect of concrete 

compressive strength ( fc D) on the ultimate 

resistance of reinforced concrete colwnns. 

When increasing the compressive strength, 

the ultimate resistance is fowtd to increase. 

The increase in the concrete compressive 

strength from 60 to 120 MPa caused an 

increase in the ultimate axial load capacity 

of 36.47%. The comparison of the 

experimental results with the obtained 

relationship shows good agreement 

Figure (I 0) shows that the increase of 

the ratio of longitudinal reinforoeroent leads 

to increase in the ultimate resistance of 

colwnns. The increase in longillldinal 

reinforcement ratio from 0.0 I to 0.05 leads 

to an increase in the ultimate axial I oad 

capacity of 33.07%. The experimental 

results also show the same trend of 

relationship. 
Figure ( 11) shows the variation of 

ultimate resistance of columns with the 

ratio of transverse reinforcement. The 

figure indicates that an increase in the ratio 

of transverse reinforcement leads to 

increase in the ultimate resistance. For an 

increase in transverse reinforcement ratio 

from 0.015 to 0.05, the increase in the 

ultimate axial load capacity is 16.96%. 

Same trend of behaviour is also obtained by 

the experimental results as depicted in Fig. 

(I l). 
The effect of the spacing of t ies is 

depicted in Fig. (12) . In this figure, it can 

be seen that the increase of spacing of ties 

leads to decrease in the ultimate resis1llnce 

of colwnns. For an increase in spacing of 

ties from 60 to 225 mm, the decrease in the 

ultimate axial load capacity is 5. 77%. 
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Figure (2) Performance of network with 

one and two hidden layer(s) 
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Figure (3) Configuration of neural 

network (7-14) 

i,. 
] - .. -,-

Ut ·· ·:i · 
J • I • 

I 

u:L ---'-' _ ..,_._:__.~ __:_ ._:__J 
Al ~ U ~UM MU U 

tdol:uat•• to.tiC:itllfl 
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Figure (7) Regression analysis based on 
GDM for testing data 
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Figure (9) V ariatioa ef aldmate axial 
load capadty with variation of cylinder 

compressive strength 
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Figure (10) Variation of ultimate axial 
load eapacity with variation of 

longitudinal reinforcement ratio 



 

Figure (II) Variation ofullimate nial 
load capacity with variation of 
transverse reinforcement ratio 
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Figure (12) Influence of spacing of ties 
on ultimate axial load capacity 

Conclusions 
In the present study, an artificial neural 

network model is used for the analysis of 
short reinforced concrete colwnns 
subjected to axial load. A multi-layered 
feedforward backpropagation neural 
network, has been used. The results of the 
analysis are presented to demonstrate the 
simplicity and accuracy of this model in 
predicting the behaviour of reinforced 
concrete columns. 
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Notation: 
b: width of column cross section (mm). 
d: depth of column cross section (mm). 



 

84 

/cf! : cylinder compressive strength of 

concrete 

(MPa). 
fy: yield strength of longitudinal steel 

(MPa), 
fyt: yield strength of transverse steel (MP a). 

<JDM: steepest descent with momentum, 

/: height of column (mm). 

me: momentum coefficient. 

R: correlation coefficient. 

RPROP: resilient backpropagation. 
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~,: ~cing of ties (nun). 

wi: weight value, 

a: learning rate. 

Pt : volumetric ratio of longitudinal 

reinforcement in column cross section. 

p, : volumetric ratio of transverse 
reinforcement, defined as volume of 

transverse steel divided by volume of 

core concrete, measured center to cent.er 

of hoop perimeter. 


